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Components of Retrieval Infrastructure:

e Minimization procedures:
» Trade space for various retrieval approaches
» Regression, physical..
» Sequential, simultaneous..
» Dependent on retrieved variables
» Degree of non-linearity
» Spectral dependence
» Forward models
» Accurate fast model essential for timely retrievals
» OSS: state of the art in fast models
* LBLTRM: state of the art in line-by-line models

* Incorporates updates in spectroscopy/line shape
models

» Used either in retrievals or for fast model training
» Cloud/Surface models/databases
» Characteristics dependent on many intrinsic properties
» Can be highly variable spatially (Land Surface)

* Need relatively simple methods to account for in
retrieval methods

* Cloud mask can improve retrieval performance

» Largeimpact for multi-layer cloud scenes

AER, Inc.

Software Development Designed for
Maximum Flexibility:

¢ Modularized software design:
« Allows for transparent updates/changes
» Trade various methods
* Forward model development/testing
* Not limited to OSS/LBLTRM
* Model trade space

« Traceable: Configuration management

« Standardized interface
* Map various data products to standard format
* Usesameinfrastructure:
* Simulations: simulate observations
*NWP, radiosonde, etc..
» Real aircraft/on orbit observations
* AIRS, AMSU, MODIS, SSMI, etc...

Development/T esting | nfrastr uctur e Flow:

Example Case Studies
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Flow From Research to Operations:
NPOESS CrIMSS Example AER developed the

NPOESS-CrIMSS
operational algorithm
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Retrieval Method | ‘ Temperature

Water vapor
Pressure
Algorithm development
Merged with requirements
|M inimization strategy
|NPOESS CrIMSS EDR Requirements

AER Unified Retrieval (UR) Algorithm

Algorithm Outline:

» Non-linear iterative physical retrieval method with * Methods developed to deal with highly non-linear
radiometric and geophysical constraints problems
* Simultaneous retrieval of required atmospheric and « Dynamically adjust step size to ensure proper
surface parameters. convergence.
* Well suited for modern high resolution hyper-spectral « DRAD Method
instruments
*Uses the difference between observed and
* Ability to combine multi-sensor/multi-footprint simulated radiance as a proxy for linearization
information within the same retrieval, either error
simultaneously or sequentially. For example "
combining AIRS and AMSU for cloud-clearin Coy 1 . AR <2/
¢ J S, (i.i)= max} =[y(i)- v ()] s (J)g
« Empirical Orthogonal Function (EOF) decomposition I'a
of retrieval parameters eLevenberg-Marquardt Method
*Reduces the dimensionality of the inversion « Self adjusting g parameter
problem. (V. ()~ y20)°
- . . ) — . — g (ycl)- yn,l
«Stabilizes inversion and reduces the time needed g=1f(c?)c?= \/ a < Ty
per retrieval. i s “ (i)
e ——————————— ———————— -~

» Basic approach: Minimizemaximum a posteriori cost

function: « Basic retrieval methodology for the NPOESS

CrIMSS operational retrievals

Instrument error cov Transformed Jacobian matrix e Temperature and water vapor

I
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s 0Ty | ATl ~ * NPOESS VIIRS cloud top pressure operational
A)&l—(K S K/"',A ) K 5§ (YO_Yi"'KA)ﬁ) : algorithm: water clouds
\ I « Used in AER'’s internal operational AMSU
: calibration/validation testbed
\

Observed and
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¢ GOES-R trade studies




Optimal Spectral Sampling

e OSS fast forward model

o —————————— —— —— -~
e Channel radiance _for inhomogeneous aFmospherlc path l, Part of the NPOESS operational algorithms \
represented by weighted sum over specific frequencies | 1
or“nodes” 1 * CrIMSS retrievals 1
N . | . |
R=§0)RM)n @ wRp;); 21 Dn 1 * VIIRS cloud top pressure algorithms I
tn = l. Incorporated into the NOAA Community !
e Automated search for smallest subset of nodes and 1 Radiative Transfer Model (CRTM) 1
weights for which the error is less than a prescribed N e e __lo____ 7

tolerance X , Development Apbplication
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Initial Development:
L ocalized training

e Inthetraining, radiances calculated with aline -by-line
model

* LBLRTM, GENLIN

« globally representative ensemble of atmospheres, Ongoing Developments: |, [NPOESS CrIMSS

surface conditions, viewing angles, etc.. Generalized training algorithm
» Analytic Jacobians calculated with little added to overall
timing - -
o Coupled with Simultaneous
* Training methods scatteringcode |———— | Atmosphere/cloud
« Localized: train each channel separately OSS-SCAT retrieval

» Generalized: Exploit the channelto-channel

correlation OSS tables in use for many instrument designs

*Microwave:
* AMSU (NOAA and EOS) « AMSR
* SSMI, SSMI/S * ATMS (NPOESS,NPP)
* CMIS (NPOESS)

°|R:
* CrIS (NPOESS,NPP)
* NAST-I (Airborne)

* Decreases the total number of nodes
* Increases the number of nodes for each channel
* Simulation of cloudy atmospheres;
* OSS/CHART merger

« AIRS
+ HES (PORD)

M icrowave Emissivity Database

Goals
*Provide emissivity constraint for lower tropospheric

19H AMSR-E Emissivity Map 07/03
(38 km resolution — nighttime only)

(Precipitable Water (PW), Cloud Liquid Water (CLW))
and LST (cloudy conditions) retrieval over land

103HE Hpal AMERE Emaiity. RaghL July 3000 Semage

|
 Applications: 1
e Climatology (PW, CLW, LST - cloudy conditions)
» Assimilation (surface emissivity model/LSM ]
validation)
« Hydrology ]
» Agriculture/Land use/surface change monitoring
e Carbon studies (LST, vegetation health) J

* IR cloud analysis (improved IR detection, liquid
cloud underneath ice layer)

7/ « Stage 1 (clearsky): \
e LST and cloud mask from V.4 MODIS algorithms L LT e NCLT/IGDAS RS2

(Primary) + QA C‘°U:n:fask Atmospheric :'\mscn‘hfv&
* Water vapor and temperature from NCEP/GDAS (current) ISCEPUST F QA products Product '
or AIRS product ,’_Et_qc__".
* Emissivity retrieved on individual AMSRE FOV’s (prior to '
Earth gridding)
« Surface information updated at each overpass at all
locations within swath

: AMSR QC L

| Stage 1 | ¥
-—-JLRscursweFllterJ

LST Mapping

Longitu
ausR [Vertical Re-gridding
;;;;;; rm Lrime i

Build Background

Core (1-D VAR) Stage 2
Retrieval Module |~

Earth Re-gridding

Module

A

« Stage 2 (Cloudy):
- Use Stage 1 data as background in 1D-VAR retrieval

algorithm (NPOESS/CMIS heritage) Database Generation

— e - —— - —— —————

”~

« Surface emissivity constraint based on recent history at
each monitored location

— e e e e - - - - o —

- procedure

Emissivity
Database




Cloud Mask: Impact on Retrievals

Cloud Mask Applied to Scenewith Multiple
cloud layers

Impact of Cloud Mask Information on Cloud
Product Retrievals

+ Openocean «Simulated AIRS radiances for a

two-layer cloud scene

eLow cloud with top 800 mb,
LWP = 80g/n?, and D = 17um

*High cloud: top at 200 mb, base
at 300 mb, vary IWP and D

 Cloud-free
vegetated land

e Thincirrus

» Noticeinstances k=
of lower clouds §
(yellow)
underneath thin
cirrus (blue)

Non-convergence product of
not accounting for low cloud
in theretrieval

« Single layer: - -
ice-particle *Retrieve assuming ONLY the
clouds single-layer cirrus cloud

* Multi -layer

*UR has sensitivity to underlying
low clouds under certain cirrus
conditions

decks: thinner
cirrus or deep
convection

Effective Diameter (pum)

10 27 45 62 80 97 115132150
Ice-Water Path (g/n?)
p— s s — |
-01 04 09 14 19 24 30 35 40
Log10 of Chi-Squared Statistic

-

I AER dloud mask algorithmspart of the
Air ForceWeather Agency (AFWA)
operational cloud product algorithms

- - o - - -

|

1 Incor porating cloud mask into

| retrieval can have a positive impact
|

I on theretrieval quality

Algorithm Testing/Development: ABI Simulations

Time >

o St
A

Simulations
* Simulations generated from Advanced
Regional Prediction System (ARPS) NWP
model fields
* Temperature, water vapor, cloud
(ice/water) amounts and surface
1 temperature

4t J * 12 hours at 15 minute time steps

d :4 &
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A

*OSS-SCAT forward model used
* ABI Channels

R EEEEE

Simulation/Retrieval Example:

e Simulate future GOES-R imager
observations
L2 Products

* Cloud Mask/ Phase
* Cloud top Temperature,

« Case study convective initiation during
IHOP 2002

P Pressure, & Height

* Cloud Optical Thickness,
Particle Size, Ice Water Path
» Convective Initiation/
Overshooting Tops

Cloud Optical Thickness

* Generate L2 products
» Testbed for algorithm trades

* Imager products can be independent
products or folded into other retrievals as
constraints

ARPSI Model
*Model data provided by Ming Xueof University of Oklahoma and documented in Xue and
Martin, Mon. Weather Rev., Vol. 134, 149-171, January 2006 and Xue and Martin, Mon. Weather
Rev., Vol. 134, 172-190, January 2006




